First Double Chooz θ_{13} measurement via Total Neutron Capture detection

D. Navas-Nicolás¹, A. Oralbaev², P. Soldin³ on behalf of the Double Chooz Collaboration

¹Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France (navas@lal.in2p3.fr), ²NRC Kurchatov Institute, Moscow, Russia (oralbaev ay@nrcki.ru), ³RWTH Aachen University, Aachen, Germany (<u>soldin@physik.rwth-aachen.de</u>)

H. De Kerret *et al.* Nat. Phys. **16**, 558-564 (2020) https://rdcu.be/b3FE4

THE DOUBLE CHOOZ EXPERIMENT

In reactor experiments, the determination of the θ_{13} mixing angle is extracted via the survival probability of $\overline{\mathbf{v}}_{\mathbf{e}}$:

$$P_{\overline{\nu}_e \to \overline{\nu}_e}(L, E) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right)$$

TOTAL NEUTRON CAPTURE (TNC)

 $\bar{\nu}_e$ are detected via the INVERSE β DECAY (IBD) $\overline{\nu}_e + \overline{p} \rightarrow e^+ + n$

455 days FD (no ND)

• 363 days FD FD and ND taking

258 days ND | data simultaneously

 $\bar{\nu}_{e}$ interacts with a proton of the organic scitillation

- PROMPT SIGNAL: energy losses + e^+ anihilation $E(vis) \simeq E(\overline{v}_e) - 0.8 \text{ MeV}$
- DELAYED SIGNAL: neutron capture on **Gadolinium** (Gd) or **Hydrogen** (H)

Rate (day ⁻¹)	FD	ND
IBD Candidates	112	816
BG Breakdown		
Accidental	4.13 ± 0.02	3.110 ± 0.004
Fast Neutron	2.50 ± 0.05	20.85 ± 0.31
⁹ Li isotope	2.62 ± 0.27	14.52 ± 1.48
Stopped μ	<0.19 @ 98% CL	<0.21 @ 98% CL
Others (¹² B, Bi-Po)	< 0.01	0.04 ± 0.01
Total		
∑ exclusive	9.3 ± 0.3	38.5 ± 1.5
2 reactors off (17 d)	9.8 ± 0.9	39.6 ± 2.5
Signal to BG	11.0	20.0

Small Gd-target (8.3 t)

detection volume Increase of signal statistics by more than

a factor of 2.5

Major increase of the

The IBD space-time coincidence relies on a multivariable ANN

IBD acceptance criteria widely opened to integrate over all nuclear capture: H, C and Gd

Accidental BG rejected >4 orders of magnitude with ANN

Excellent data-to-MC agreement

The energy-scale uncertainty has negligible impact (<0.05%)

θ₁₃ Oscillation Fit Results

RATE + SHAPE FIT

Simultaneous comparison of FD and ND observed IBD rate + shape data to non-oscillated flux predictions

$$\begin{split} \chi^2 &= \Sigma_{ij} (N_i^{obs} - N_i^{exp}) M_{cov}^{-1} (N_j^{obs} - N_j^{exp}) \ ^T + \text{Penalty pulls} + \text{Reactor off} \\ N_i^{exp} &= N_i^{MC} (\theta_{13} = 0, \epsilon_{det}, a', b', c') \sum \left[1 - \sin^2(2\theta_{13}) \sin^2\left(\frac{1.267 \ \Delta m_{ee}^2 [eV^2] \ L_{\nu}[m]}{E_{\nu}[MeV]}\right) \right] + N_i^{BG} \end{split}$$

0.0018

0.0018

0.0054

0.0141

13.3%

Background

Statistics

Total

systematics (poor proton# GC) Effective correlation uncertainty = 0.0065

SPECTRAL DISTORTION

- Distortion effect out of the oscillation range. Interdetector ratio demonstrates the suppression of the 5MeV spectral distortion
- Excess events in 4 6 MeV region in agreement with flux model
- Empirical fit: negative slope and single or double peak

- Stability of the θ_{13} measurement scrutinized and demonstrated against the behaviour of the reactor model for both the SD and MD configurations
- An increase of a factor greater than 3 of the uncertainty of the reference spectrum causes both a more robust θ_{13} value (<1% effect) and alleviation of the χ^2 tension

Mean Cross-Section Per Fission $\langle \sigma_f \rangle$

 Provides a measure of the total reactor neutrino integrated flux per reactor

UNIVERSITE PARIS-SACLAY

